Navigation for Offshore Sailing
“This new ship here, is fitted according to the reported increase of knowledge among mankind. Namely, she is cumbered, end to end, with bells and trumpets and clocks and wires which, it has been told to me, can call Voices out of the air or the waters to con the ship while her crew sleep. But sleep thou lightly...It has not yet been told to me that the Sea has ceased to be the Sea”

- Rudyard Kipling
Outline

• Review
 – Nautical Chart types and scales
 – Buoyage System (IALA Region B)
 – Light characteristics
 – “Rules of the Road”
 – Tidal currents
 – Basic navigational inputs

• Basic Navigation Skills
 – Planning a course to steer
 – Estimating your position
 – Knowing where you are
 – Inshore Pilotage
Geographical Coordinate System

- Latitude
 - Parallel
 - Pole
 - North
 - South
 - Equator

- Longitude
 - Meridian
 - Pole
 - West
 - East
 - Prime Meridian
Mercator Projection

- **Advantages**
 - Easy to use rectangular grid
 - Straight lines cross Meridians at constant angle (Rhumb Lines)
- **Disadvantages**
 - Chart scale not constant with position
 - Distance between lines of latitude are exaggerated in polar regions
Nautical Chart Scales

• Boston Harbor
 – Large scale (1/25,000)
 – Covers small area

• Newport to Bermuda
 – Small scale (1/1,058,400)
 – Covers large area
Buoys and Beacons

Cardinal Marks: indicating navigable water to the named side of the marks. In the illustration, all marks are the same in Regions A and B.

UNLIT MARKS
- Topmark: 2 black cones

LIGHTED MARKS
- Light: White

The same abbreviations are used for lights on spar buoys and beacons. The periods 10s, 10s, and 10s may not always be charted.

130.3

Isolated Danger Marks stationed over dangers with navigable water around them.

130.4
- Body: black with red horizontal band(s)
- Topmark: 2 black spheres
- Light: White

Safe Water Marks such as mid-channel and landfall marks.

130.5
- Body: red and white vertical stripes
- Topmark (if any): red sphere
- Light: White

Special Marks not primarily to assist navigation but to indicate special features.

130.6
- Body (shape optional): yellow
- Topmark (if any): yellow X
- Light: yellow, rhythm optional

In special cases yellow can be in conjunction with another color.

Supplementary National Symbols

| a | Bell buoy | BELL
| b | Gong buoy | GONG
| c | Whistle buoy | WHISTLE
| d | Fairway buoy (red and white vertical stripes) | RW

76
• **8 Ways to Identify a Lateral Mark**
 - Color (Green, Red)
 - Buoy shape (Cylindrical, Conical)
 - Dayboard (Green Square, Red Triangle)
 - Topmark (Cylinder, Cone (point upward))
 - Light Color (Green, Red)
 - Reflector Color (Green, Red)
 - ID Number (Odd, Even)
 - Sound (Gong (clang), Bell (ding))

• **Light Rhythms**
 - Fixed
 - Occulting
 - Isophase
 - Flashing
 - Quick
 - Group or Composite Group
 - Morse Code
 - Fixed and Flashing
 - Alternating
The Lateral Buoyage marking the channels is Red to Starboard, related to the Conventional Direction of Buoyage. Off the coast, the direction of buoyage in this area is from east to west; within the estuary, it is the direction taken by the mariner when approaching from seaward.
Tidal Currents

• Set
 – Direction in which an object will travel at a given time if carried by the tidal current
 – NOTE: this is opposite to the way wind is represented

• Drift
 – The distance that an object will travel in a given time if carried by the tidal current

• Current (or Flow)
 – The speed at which an object will travel at a given time if carried by the tidal current

• Ebb
 – Refers to the tidal current in the falling phase of the tide

• Flood
 – Refers to the tidal current in the rising phase of the tide
BOSTON HARBOR (Deer Island Light)

Predicted Tidal Current April, 2008
Flood Direction, 254 True. Ebb (-) Direction, 111 True.
NOAA, National Ocean Service

<table>
<thead>
<tr>
<th>Day</th>
<th>Slack Water Time h.m.</th>
<th>Maximum Current Time h.m.</th>
<th>Slack Water Veloc. knots</th>
<th>Maximum Current Veloc. knots</th>
<th>Slack Water Time h.m.</th>
<th>Maximum Current Time h.m.</th>
<th>Slack Water Veloc. knots</th>
<th>Maximum Current Veloc. knots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0151</td>
<td>0500 +1.0</td>
<td>0733</td>
<td>1206 -1.1</td>
<td>1422</td>
<td>1738 +1.1</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0032</td>
<td>0245 -1.1</td>
<td>0536</td>
<td>0828 -1.2</td>
<td>1249</td>
<td>1511</td>
<td>1827 +1.2</td>
<td>2102</td>
</tr>
<tr>
<td>3</td>
<td>0115</td>
<td>0336 -1.2</td>
<td>0646</td>
<td>0920 -1.3</td>
<td>1328</td>
<td>1559</td>
<td>1911 +1.4</td>
<td>2151</td>
</tr>
<tr>
<td>4</td>
<td>0152</td>
<td>0424 -1.3</td>
<td>0730</td>
<td>1010 -1.3</td>
<td>1400</td>
<td>1644</td>
<td>1950 +1.5</td>
<td>2237</td>
</tr>
<tr>
<td>5</td>
<td>0223</td>
<td>0511 -1.4</td>
<td>0810</td>
<td>1057 -1.4</td>
<td>1429</td>
<td>1729</td>
<td>2026 +1.6</td>
<td>2322</td>
</tr>
<tr>
<td>6</td>
<td>0254</td>
<td>0558 -1.5</td>
<td>0847</td>
<td>1143 -1.4</td>
<td>1503</td>
<td>1813</td>
<td>2059 +1.6</td>
<td></td>
</tr>
</tbody>
</table>
Current Chart

TIDAL CURRENT CHART
PUGET SOUND, NORTHERN PART

Arrows show the direction and figures the speed in knots of the current at time indicated at bottom of chart. This chart is designed for use with the predicted times and speed of current for Admiralty Inlet (Off Bush Point). These predictions are contained in the Pacific Coast Current Tables published in advance for each year by the National Oceanic and Atmospheric Survey, National Ocean Survey.

ONE HOUR BEFORE MAXIMUM EBB OFF BUSH POINT. (E-1)
Tidal Currents
Rule of Thirds and 50/90 Rule

<table>
<thead>
<tr>
<th>Hour</th>
<th>Drift</th>
<th>Max Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/3 C (nm)</td>
<td>.5C</td>
</tr>
<tr>
<td>2</td>
<td>2/3 C (nm)</td>
<td>.9C</td>
</tr>
<tr>
<td>3</td>
<td>3/3 C (nm)</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>3/3 C (nm)</td>
<td>.9C</td>
</tr>
<tr>
<td>5</td>
<td>2/3 C (nm)</td>
<td>.5C</td>
</tr>
<tr>
<td>6</td>
<td>1/3 C (nm)</td>
<td>0</td>
</tr>
</tbody>
</table>

Slack Water

Drift

Current (kt)

0 .5C .9C C .9C .5C 0
Basic Navigational Inputs

• Your eyes
 – Look around
 – Orient the chart
 – Relate your visible surroundings to the chart

• Compass
 – True Heading
 – Variation
 – Magnetic Heading
 – Deviation
 – Compass Heading

• Log / Clock
 – Speed
 – Distance run

• Depth sounder
 – Local depth
Outline

• Review
 – Nautical Chart types and scales
 – Buoyage System (IALA Region B)
 – Light characteristics
 – “Rules of the Road”
 – Tidal currents
 – Basic navigational inputs

• Basic Navigation Skills
 – Planning a course to steer
 – Estimating your position
 – Knowing where you are
 – Inshore Pilotage
Planning a Course to Steer

- Course to Steer is what you tell the helm to steer
 - By reference to a clear, distant, motionless visual mark (best)
 - By reference to the compass at the helm (less good)
 - By reference to wind (e.g., close hauled, broad reach)

- Use your chart plotter or parallel rulers on the chart to determine the direction to your destination
 - This will be a True Course
 - Professional navigators always plot True Course on the chart
 - Some navigators prefer to plot Magnetic Course
 - Correct for leeway and current to get Course to Steer (in degrees True)
 - Correct for Variation and Deviation to get Course to Steer (in degrees Per Steering Compass, or “PSC”)

- Whatever system you use, be clear and consistent
 - You will be reading your chart when you are tired and seasick
 - Others will be reading your chart under similar conditions
Plotting your Desired Course

Arrowhead indicates a course
Prefix “C” indicates Course
Suffix T or M indicates True or Magnetic

If there is no leeway or current, you can correct this for Variation and Deviation and hand up to the helm as Course to Steer
Note the compass course steered in the ship’s log
Correcting for Leeway (no current)

Remember: This is the course you are trying to make good through the water

Estimate your leeway angle (in this case 9°)
If there is no current, correct for Variation and instruct the helm to steer 068° on the binnacle compass (corrected for Deviation if necessary)

Note the compass course steered in the ship’s log (068° PSC)
With current, we must distinguish between the Course we make good through the water and our Desired Track (or Track).

The Track is often called the “Course Made Good Over the Bottom”.

Since the Track will be different than our Course made good through the water, we label it differently.
Correcting for Current

Draw a vector with the estimated 1 hour current set (direction) and drift (distance)

Label it as a current vector
Connect the current vector to the desired track using the estimated distance the boat will travel through the water in the same interval (1 hour).

Note: You don’t have to use 1 hour, it just makes the math easier.
Correcting for Current

Wind

Label the desired course made good through the water
Correcting for Current

Correct for leeway and label as course to steer (if desired)
Correct for variation and deviation and hand up to the helm
Note compass course steered (057° PSC) in ship’s log
Correcting for Current

Alternate Labeling Technique

Construct current correction triangle on a separate plotting sheet or clear area on chart

Plot Course to Steer directly on Track
Outline

• Review
 – Nautical Chart types and scales
 – Buoyage System (IALA Region B)
 – Light characteristics
 – Basic navigational inputs

• Basic Navigation Skills
 – Planning a course to steer
 – Estimating your position
 – Knowing where you are
 – Inshore Pilotage
The Ship’s Log

<table>
<thead>
<tr>
<th>Time</th>
<th>Log</th>
<th>Course</th>
<th>Weather</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>33.5</td>
<td>057 PSC</td>
<td>NNW10, 1005mb, Fair</td>
<td>GPS Fix, GPS OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Ship’s Log

<table>
<thead>
<tr>
<th>Time</th>
<th>Log</th>
<th>Course</th>
<th>Weather</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>33.5</td>
<td>057 PSC 062 PSC</td>
<td>NNW10, 1005mb, Fair N10</td>
<td>GPS Fix, GPS OFF, Close hauled on Port Tack</td>
</tr>
<tr>
<td>2000</td>
<td>39.5</td>
<td>062 PSC</td>
<td>N10, 1005mb, Fair</td>
<td>Close hauled, Port</td>
</tr>
</tbody>
</table>
The Ship’s Log

<table>
<thead>
<tr>
<th>Time</th>
<th>Log</th>
<th>Course</th>
<th>Weather</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>33.5</td>
<td>057 PSC</td>
<td>N10, 1005mb, Fair</td>
<td>GPS Fix, GPS OFF, Close hauled on Port Tack</td>
</tr>
<tr>
<td>2000</td>
<td>39.5</td>
<td>062 PSC</td>
<td>N10, 1005mb, Fair</td>
<td>Close hauled, Port</td>
</tr>
<tr>
<td>2100</td>
<td>45.5</td>
<td>322 PSC</td>
<td>N10, 1005mb, Fair</td>
<td>Tacked, Close hauled, Stbd</td>
</tr>
</tbody>
</table>
The Ship’s Log

<table>
<thead>
<tr>
<th>Time</th>
<th>Log</th>
<th>Course</th>
<th>Weather</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>33.5</td>
<td>057 PSC</td>
<td>NNW10, 1005mb, Fair N10</td>
<td>GPS Fix, GPS OFF, Close hauled on Port Tack</td>
</tr>
<tr>
<td>2000</td>
<td>39.5</td>
<td>062 PSC</td>
<td>N10, 1005mb, Fair</td>
<td>Close hauled, Port</td>
</tr>
<tr>
<td>2100</td>
<td>45.5</td>
<td>322 PSC</td>
<td>N10, 1005mb, Fair</td>
<td>Tacked, Close hauled, Stbd</td>
</tr>
</tbody>
</table>

Where Are We?
What do we do next?
Estimating Your Position

• Plot a Dead Reckoning Position
 – Course steered and distance logged
 – Use ship’s log as the source of information

• Plot an Estimated Position
 – Position adjusted for leeway and current
Plotting a Dead Reckoning Position

GPS 1900

CTS 041°T

TR 061°T
From 1900 to 2000, compass course steered was 062° PSC and log difference is 6nm (39.5-33.5)

Course steered was 046°T (Remember: TVMDC)
Plotting a Dead Reckoning Position

Draw a line from the 1900 position, along the course steered (046°T) and mark a point at the distance traveled (6nm)

Label this as your 2000 DR position

NOTE: DR position is not corrected for leeway or current
Plotting an Estimated Position

Plot a line representing your Course Made Good through the water (i.e., the course steered, adjusted for leeway)

In this case it is 046°T + 9° = 055°T

Make the length of the line the distance traveled from 1900-2000 (6nm)
Plotting an Estimated Position

From the end of the Course Made Good through the water, plot a line representing the estimated current set and drift over the time period.

In the absence of any new information, use the same set and drift that you used to calculate your course to steer.

Label the resulting Estimated Position with the time.
Since nothing changed between 2000 and 2100, you can simply lay your plotting tool along a line between the 1900 GPS Fix and the 2000 EP and mark the 2100 EP along the extension of that line.
The distance between the 2000 EP and the 2100 EP should be the same as between the 1900 GPS Fix and the 2000 EP.
Assess the Situation

On the present tack, the helm is steering 322C (306T)

Accounting for leeway, the boat is making 297T through the water at ~6 knots

Even accounting for current, this looks like a bad tack
Plan a Course to Steer

Instruct the watch captain to return to port tack and remain close-hauled. If the wind backs, the helm can stay with it up to 057 PSC, then maintain 057 PSC to parallel the desired track.

After tacking, make a log entry and get some sleep…
You can string multiple tacks together with multiple current estimates. This is particularly helpful with tidal currents and longer passages.
Outline

• Review
 – Nautical Chart types and scales
 – Buoyage System (IALA Region B)
 – Light characteristics
 – “Rules of the Road”
 – Tidal currents
 – Basic navigational inputs

• Basic Navigation Skills
 – Planning a course to steer
 – Estimating your position
 – Knowing where you are
 – Inshore Pilotage
Knowing Where You Are

- Position by immediate observation
- Position Fixes defined by lines
- Running Fix
Position by Immediate Observation

Log Entry: “1535: Abeam Red Bell #2 Three and One-Half Fathoms Ledge”
Position Defined by Lines
Position Defined by Lines

“Poor Cut”
small errors in bearing produce large position errors

“Good Cut”
position less sensitive to bearing errors

Try to select objects whose LOPs will intersect at 45° or more
Sources of Lines of Position

• Ranges
 – “Official” range set up for navigation
 • Excellent quality
 – “Unofficial” range based on charted objects
 • Quality depends on objects chosen

• Compass bearings on objects
 – Quality depends on compass, observation conditions, and position stability of object

• Depth contours
 – Quality depends on bottom contour, condition, and tide

• Distance off
 – Measured by RADAR
 – Measured by sextant
 – Dipping of object of known height (typically lighthouses)
Using a Single Line of Position

Let’s say that you are keeping a series of estimated positions, using your estimates of your course made good through the water and current set and drift.
Using a Single Line of Position

At 1600, you get a good single LOP from a mark
Using a Single Line of Position

You can update your estimated position by moving it from your initial estimate to the closest point along the LOP.

Note that this is not a fix. It is simply an adjusted estimated position.
At some later time, you get another LOP on the same mark.
The Running Fix

Plot your course made good through the water and estimated current set and drift just like you would for an Estimated Position.
Advance the earlier line of position in the direction and distance you estimate that you’ve traveled over the bottom.

Label it as an advanced LOP.
Plot your running fix and label it as such.

The Running Fix

RF1800
The Running Fix - Cautions

The running fix appears precise, but it is only as accurate as your ability to estimate your distance and direction traveled over the bottom.

Your LOPs should subtend an angle of no less than 45-60 degrees.

Running fixes are a very blunt navigational tool, but sometimes they’re all you have.
Special Cases of the Running Fix

Doubling Angle on the Bow

Distance AB is equal to distance from B to lighthouse. Bearing from lighthouse completes the fix.
Special Cases of the Running Fix

Doubling Angle on the Bow

Distance AB is equal to distance from B to lighthouse. Bearing from lighthouse completes the fix.

45-90 Doubling Angle

Distance AB is equal to distance from B to LIGHTHOUSE. Bearing from lighthouse completes the fix.
Special Cases of the Running Fix

Doubling Angle on the Bow

Distance AB is equal to distance from B to lighthouse. Bearing from lighthouse completes the fix.

α

2α

Beam Bearing Drift Rate

When abeam the Lighthouse, the distance between B and the Lighthouse is equal to the time (in minutes) that it takes the bearing angle to change (in degrees) an amount equal to the vessel speed (in knots).

45-90 Doubling Angle
Outline

• Review
 – Nautical Chart types and scales
 – Buoyage System (IALA Region B)
 – Light characteristics
 – Basic navigational inputs

• Basic Navigation Skills
 – Planning a course to steer
 – Estimating your position
 – Knowing where you are
 – Inshore Pilotage
Inshore Pilotage

• In waters crowded with buoys, beacons, and hidden hazards, there is often no time for formal chartwork

• Typically these occur at beginning or end of a passage – often in unfamiliar waters

• Procedures must be simple to set up and follow

• Most navigation aboard X Dimension in and around Boston Harbor is inshore pilotage
Clearing or Danger Bearing
Inshore Pilotage Tips

- For complex harbor entries, plan ahead with appropriate bearings and informal ranges
- For landfall in low visibility, bias your course to steer so you know which way to turn when shore becomes visible
- Keep a chart on deck with you and refer to it often, even in familiar waters
- “Prove” your bearings with informal ranges where possible to account for current
- Communicate clearly to helm and crew – give them time to prepare
- Check and double-check your information
Double Check Your Information
Celestial Navigation
Any point on the celestial sphere can be located by its Declination and Sidereal Hour Angle.

Declination is measured in reference to the celestial equator (parallel to earth’s equator).

Sidereal Hour Angle is measured in reference to the First Point of Aries (Vernal Equinox).
The Geographical Position of a celestial body is the point on Earth where the body is at the zenith.

The Declination of the GP is the same as that on the celestial sphere (equivalent to Latitude).

The Greenwich Hour Angle of the GP is referred to the Prime Meridian.
The Sidereal Hour Angle and Declination of 57 Navigational Stars are documented in the Nautical Almanac for each day of the year (Polaris is treated separately)

The Greenwich Hour Angle of Aries is documented in the Nautical Almanac for every second of the year
For any observer on the earth, the celestial body will appear at a certain angle from the zenith (ZD).

The body will also appear at an angular altitude (H) above the horizon (ZD = 90° – H).

We measure H with a sextant.
The Navigational Triangle

AP : Assumed Position
GP : Geographical Position of Celestial Body

a: intercept distance
LOP: line of position
ZD = 90° - Hc

known in blue, computed in red
The Navigational Triangle

AP: Assumed Position (Lat, Lon)

GP: Geographical Position of Celestial Body (Dec, GHA)

Assumed Position comes from our Estimated Position

Geographical Position comes from the Nautical Almanac

- **a**: intercept distance
- **LOP**: line of position
- **360°-LHA**
- **90°-Dec**
- **90°-Lat**
- **ZD = 90° - Hc**

Known in blue, computed in red
Knowns:

Declination of body (Dec)
Local Hour Angle of body (LHA)
Assumed Latitude (Lat)

From Law of Cosines for Spherical Geometry*

\[
\sin (Hc) = \sin(Dec) \times \sin(Lat) + \cos(Dec) \times \cos(Lat) \times \cos(LHA)
\]

\[
\cos(Z) = \frac{\sin(Dec) - \sin(Lat) \times \sin(Hc)}{\cos(Lat) \times \cos(Hc)}
\]

In Northern Latitudes:

\[
Zn = Z \text{ when } LHA > 180^\circ
\]

\[
Zn = 360^\circ - Z \text{ when } LHA < 180^\circ
\]

In Southern Latitudes:

\[
Zn = 180^\circ - Z \text{ when } LHA > 180^\circ
\]

\[
Zn = 180^\circ + Z \text{ when } LHA < 180^\circ
\]

*Note: Southern declinations and latitudes have negative sign in these equations

Given Dec, LHA, and Lat, one can solve for Hc and Zn
We know the Computed Altitude of the body at our Assumed Position \((H_c) \)
(This is the altitude the body would have if we were at our Assumed Position)

We know the azimuth from our Assumed Position to the GP of the body \((Z_n) \)

We measure the Altitude of the body with our sextant and compare it with \(H_c \)

We draw a line of position, perpendicular to \(Z_n \)
Towards celestial body

If our Observed Altitude (Ho) is less than Hc, then the LOP is plotted away from the celestial body by an amount equal to Hc – Ho (minute of arc = nautical mile).

If our Observed Altitude (Ho) is greater than Hc, then the LOP is plotted toward the celestial body by an amount equal to Ho – Hc (minute of arc = nautical mile).
Summary Procedure

• Make an observation with the sextant and note the time, Hs, and the body name

• Convert Hs to Ho (corrections for refraction, sextant error, etc.)

• Get the GHA and Declination of the body from the Nautical Almanac for the time of the observation

• Compute the LHA of the body based on your Assumed Longitude

• Enter the the Sight Reduction Tables with LHA, Dec, and Assumed Latitude and get Hc and Zn

• Compare Hc to Ho and plot the Line of Position perpendicular to Zn
So Why is Celestial So Hard?

- You need to make a very accurate sextant measurement from a moving platform
- You need to make corrections to the sextant measurement
 - Sextant index error, refraction, height of eye, parallax, diameter of body
 - Requires table look-ups and arithmetic
 - Several opportunities for error
- You need to get data from Nautical Almanac
 - Requires several table look-ups and more arithmetic
 - More opportunities for error
- You need to reduce the sights to find Zn and Hc
 - Requires choosing a proper assumed position to use the tables
 - More look-ups and arithmetic
- You need to correctly plot the LOPs
So Why is Celestial So Hard?

- You need to make a very accurate sextant measurement from a moving platform
- You need to make corrections to the sextant measurement
 - Sextant index error, refraction, height of eye, parallax, diameter of body
 - Requires table look-ups and arithmetic
 - Several opportunities for error
- You need to get data from Nautical Almanac
 - Requires several table look-ups and more arithmetic
 - More opportunities for error
- You need to reduce the sights to find Zn and Hc
 - Requires choosing a proper assumed position to use the tables
 - More look-ups and arithmetic
- You need to correctly plot the LOPs

“**Sextant**: an entertaining, albeit expensive, device, which, together with a good atlas, is of use in introducing the boatman to many interesting areas on the earth's surface which he and his craft are not within 1,000 nautical miles of.”

- Beard and McKie
“I looked in the Nautical Almanac and found that on that very day, June 7, the sun was behind time 1 minute and 26 seconds, and that it was catching up at a rate of $\frac{14}{67}$ seconds per hour. The chronometer said that at the precise moment of taking the sun's altitude it was 25 minutes after 8:00 in Greenwich. From this date it would seem a schoolboy's task to correct the Equation of Time. Unfortunately I was not a schoolboy.”

Jack London, *The Cruise of the Snark*
R Fix 1332 EDT
33° 05' N
065° 20' W

Calculation Fix:
33° 06' N
065° 20' W

CPS to Kitchen Shoal: 138° T
3 miles (30 km) to 50 mi range