Coastal Navigation II

- Quick Recap of Navigation I
- Tides
- Obtaining a Fix
- Dead Reckoning
- Navigation Rules
- Electronic Navigation Systems
- Additional Resources
Recap of Coastal Navigation I

• Marine navigation means:
 • Determining your location
 • Determining a route to a destination
 • Collision avoidance

• Latitude & Longitude
 • Use degrees & minutes format
 • Use consistent horizontal datum
 • (WGS84 and/or NAD83)
Recap of Coastal Navigation I

• Nautical Mile:
 • Exactly 1852 meters
 • *Almost* exactly one minute of latitude
 • **NOT** one minute of longitude

• Mercator Projection
 • Scale changes with latitude
 • Direction angles can be measured on maps
 • Rhumb lines are straight lines
Recap of Coastal Navigation I

• Nautical Chart Features:
 • Scale, colors, depth soundings, chart symbols

• Aids to Navigation
 • Buoys, lights & daybeacons
 • Colors, shapes, sounds, lights, markings
 • Lateral marks, center-channel, danger, etc.
 • Symbols and labels on charts
Recap of Coastal Navigation I

- Magnetic Compass:
 - Variation (magnetic vs. true direction)
 - Deviation (compass error)
 - Var. and Dev. expressed as degrees E. or W.
 - Can Dead Men Vote Twice (add E)
 - True Virgins Make Dull Companions (add W)
Recap of Coastal Navigation I

- Magnetic Compass:
 - Variation (magnetic vs. true direction)
 - Deviation (compass error)
 - Var. and Dev. expressed as degrees E. or W.
 - Can Dead Men Vote Twice (add E)
 - True Virgins Make Dull Companions (add W)
Tides
Tides
Tides

Forces that influence the tides:

- Low tide
- High tide (left)
 - The effect of centrifugal force on the ocean, a result of Earth orbiting around the centre of gravity between it and the moon
- High tide (right)
 - The gravitational pull of the moon on the ocean
- Earth rotates
Tides

FORCES THAT INFLUENCE THE TIDES

LOW TIDE

HIGH TIDE

THE GRAVITATIONAL PULL OF THE MOON ON THE OCEAN

LOW TIDE

EARTH Rotates
Tidal Forces

\[F_g = \frac{m_1 m_2 G}{r^2} \]

- \(r_1 = 377,600 \text{ km} \)
- \(r_2 = 384,000 \text{ km} \)
- \(r_3 = 390,400 \text{ km} \)

(Distances not to scale)
Tidal Forces

\[F_g = \frac{m_1 m_2 G}{r^2} \]

\(r_1 = 377,600 \text{ km} \)
\(r_2 = 384,000 \text{ km} \)
\(r_3 = 390,400 \text{ km} \)

(Distances not to scale)
Tidal forces are the forces acting on an object caused by the difference in gravitational pull of another object relative to the force acting on the center of that object.

(Distances not to scale)
Tidal forces are the forces acting on an object caused by the difference in gravitational pull of another object relative to the force acting on the center of that object.
Tidal Forces

Tidal forces are the forces acting on an object caused by the difference in gravitational pull of another object relative to the force acting on the center of that object.
Tides

Water bulges away from Moon

Mean sea level

Water bulges toward Moon

To Moon

Equator

Earth's rotation
Tidal Amplitudes

Model_TPXO6.2
Tidal Range

What affects the range of the tides at a location?

- Shape of the sea floor:
 - Bays and inlets act as funnels
 - Rapidly rising sea floor will amplify a wave
Tidal Range

What affects the range of the tides?

- The size of the sea basin
 - Smaller bodies of water have negligible tides
 - Basins the right size create resonance
Tidal Range

What affects the range of the tides?

- The size of the sea basin
- Smaller bodies of water have negligible tides
- Basins the right size create resonance
Spring Tides & Neap Tides

Spring Tide

New Moon

Full Moon

Lunar Tide

Solar Tide

Neap Tide

First Quarter moon

Third Quarter moon

Lunar Tide

Solar Tide
Lunar Orbit

Sidereal Period: 27.3 days
Synodic Period (lunar phases): 29.5 days

(Not to scale)
Lunar Orbit

Apsidal Precession: orbit rotates every 8.85 years

(Not to scale)
Lunar Orbit
Nodal Precession: every 18.6 years

Ecliptic
(plane of earth’s orbit)

Lunar descending node

Lunar orbit

Lunar ascending node

Precession of nodes

(Not to scale)
Tide Predictions

How to predict tides at a specific location:
- Monitor the sea level for 19 years at a tidal station.
- Perform harmonic analysis on the data.
- Determine amplitude and phase for 37 harmonic factors.
- Each harmonic factor has a different period (frequency)
- Sum the 37 sine waves for a given time and date.

Main factors in the tide prediction function:
- Movement of the moon across the sky (12 hours, 24 min.)
- Movement of the sun across the sky (12 hours)
- Position of the moon on its elliptical orbit (12 hours 39.5 min.)
Vertical Datum

National Tidal Datum Epoch: 1983-2001

- The various reference levels are derived from this data:
 - Mean Higher High Water (MHHW)
 - Mean High Water (MHW)
 - Mean Sea Level (MSL)
 - Mean Low Water (MLW)
 - Mean Lower Low Water (MLLW)
Tide Predictions
Tide Predictions

Source of tide prediction information:

- NOAA website (http://tidesandcurrents.noaa.gov)
- NOAA weather radio
- Printed in various publications (Eldridge Tide Book)
- GPS chartplotter
- Many software applications
<table>
<thead>
<tr>
<th>January</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Sa</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Su</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>Sa</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>Su</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>Tu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Tide Predictions

NOAA/NOS/CO-OPS
Observed Water Levels at 8443970, Boston MA
From 2015/12/25 00:00 GMT to 2015/12/31 23:59 GMT

Datums (MLLW)

Height in feet (MLLW)

NOAA/NOS/Center for Operational Oceanographic Products and Services

Predictions Verified (Observed – Predicted)
Tide Predictions

NOAA/NOS/CO-OPS
Verified Hourly Heights at 8443970, Boston MA
From 2014/03/25 00:00 LST to 2014/03/29 23:59 LST

Height in feet (MLLW)

NOAA/NOS/Center for Operational Oceanographic Products and Services

Predictions
Verified
Preliminary
(Observed – Predicted)
Current Predictions

Station ID: BOS1111 Depth: 8 feet
Source: NOAA/NOS/CO-Ops
Station Type: Harmonic
Time Zone: LST/LDT

NOAA Tidal Current Predictions

Boston Harbor (Deer Island Light), 2016

Latitude: 42.3378° N Longitude: 70.9558° W

Mean Flood Dir. 264° (T) Mean Ebb Dir. 112° (T)

Times and speeds of maximum and minimum current, in knots

<table>
<thead>
<tr>
<th>January</th>
<th>February</th>
<th>March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slack</td>
<td>Maximum</td>
<td>Slack</td>
</tr>
<tr>
<td>h m</td>
<td>h m knots</td>
<td>h m</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>01:12AM 1.5E</td>
</tr>
<tr>
<td>2</td>
<td>Sa</td>
<td>02:06AM 07:54AM -1.0E</td>
</tr>
<tr>
<td>3</td>
<td>Su</td>
<td>05:00PM 09:30PM -0.8E</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>06:24AM 10:54AM -1.3E</td>
</tr>
<tr>
<td>5</td>
<td>Tu</td>
<td>07:36PM 11:18PM -0.9E</td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>08:48PM 11:08PM -0.6E</td>
</tr>
<tr>
<td>7</td>
<td>Th</td>
<td>09:54PM 11:14PM -1.2E</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>10:54AM 1:24PM 1.4F</td>
</tr>
<tr>
<td>9</td>
<td>Sa</td>
<td>11:54AM 1:24PM 1.4F</td>
</tr>
<tr>
<td>10</td>
<td>Su</td>
<td>12:54PM 1:24PM 1.4F</td>
</tr>
</tbody>
</table>
Current Predictions

January

<table>
<thead>
<tr>
<th>Slack</th>
<th>Maximum</th>
<th>Slack</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h m</td>
<td></td>
<td>h m</td>
</tr>
<tr>
<td></td>
<td>knots</td>
<td></td>
<td>knots</td>
</tr>
<tr>
<td>1 F</td>
<td>03:48AM</td>
<td>10:30AM</td>
<td>07:54AM</td>
</tr>
<tr>
<td></td>
<td>01:12AM</td>
<td>01:36PM</td>
<td>-1.0E</td>
</tr>
<tr>
<td></td>
<td>08:06PM</td>
<td>10:48PM</td>
<td>-0.9E</td>
</tr>
<tr>
<td></td>
<td>01:12AM</td>
<td>07:24AM</td>
<td>-1.3E</td>
</tr>
<tr>
<td></td>
<td>10:06AM</td>
<td>12:12PM</td>
<td>1.5F</td>
</tr>
<tr>
<td></td>
<td>03:36PM</td>
<td>07:42PM</td>
<td>-1.2E</td>
</tr>
<tr>
<td></td>
<td>10:30PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Sa</td>
<td>04:36AM</td>
<td>11:24AM</td>
<td>08:30AM</td>
</tr>
<tr>
<td></td>
<td>02:36PM</td>
<td>08:30PM</td>
<td>-1.0E</td>
</tr>
<tr>
<td></td>
<td>05:00PM</td>
<td>11:42PM</td>
<td>02:36PM</td>
</tr>
<tr>
<td></td>
<td>08:30PM</td>
<td>11:42PM</td>
<td>02:36PM</td>
</tr>
<tr>
<td></td>
<td>12:42AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:42PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Su</td>
<td>05:30AM</td>
<td>12:18PM</td>
<td>09:24AM</td>
</tr>
<tr>
<td></td>
<td>03:30PM</td>
<td>09:06PM</td>
<td>-0.9E</td>
</tr>
<tr>
<td></td>
<td>05:54PM</td>
<td>09:54PM</td>
<td>-1.1E</td>
</tr>
<tr>
<td></td>
<td>05:12AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09:30AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Sa</td>
<td>03:18AM</td>
<td>10:06AM</td>
<td>07:24AM</td>
</tr>
<tr>
<td></td>
<td>10:06AM</td>
<td>12:12PM</td>
<td>1.5F</td>
</tr>
<tr>
<td></td>
<td>03:36PM</td>
<td>07:42PM</td>
<td>-1.2E</td>
</tr>
<tr>
<td></td>
<td>10:30PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Su</td>
<td>04:12AM</td>
<td>11:06AM</td>
<td>08:18AM</td>
</tr>
<tr>
<td></td>
<td>01:18PM</td>
<td>11:06AM</td>
<td>08:18AM</td>
</tr>
<tr>
<td></td>
<td>04:42PM</td>
<td>01:18PM</td>
<td>1.4F</td>
</tr>
<tr>
<td></td>
<td>08:36PM</td>
<td>11:30PM</td>
<td>01:18PM</td>
</tr>
<tr>
<td>18 M</td>
<td>05:12AM</td>
<td>12:12PM</td>
<td>09:30AM</td>
</tr>
<tr>
<td></td>
<td>12:12PM</td>
<td>09:30AM</td>
<td>-1.3E</td>
</tr>
<tr>
<td></td>
<td>03:30PM</td>
<td>02:24PM</td>
<td>1.3F</td>
</tr>
<tr>
<td></td>
<td>05:48PM</td>
<td>09:54PM</td>
<td>-1.1E</td>
</tr>
</tbody>
</table>
Tide Stations

SOUNDINGS IN FEET
AT MEAN LOWER LOW WATER

Additional information can be obtained at nauticalcharts.noaa.gov.

<table>
<thead>
<tr>
<th>NAME</th>
<th>PLACE (LAT/LONG)</th>
<th>Mean Higher High Water</th>
<th>Mean Higher High Water</th>
<th>Mean Low Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston Light</td>
<td>(42°19'N/70°53'W)</td>
<td>9.8</td>
<td>9.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Charlestown Bridge</td>
<td>(42°22'N/71°04'W)</td>
<td>10.2</td>
<td>9.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Weymouth Fore River Bridge</td>
<td>(42°15'N/70°56'W)</td>
<td>10.2</td>
<td>9.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Cohasset Harbor</td>
<td>(42°15'N/70°47'W)</td>
<td>9.5</td>
<td>9.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Dashes (---) located in datum columns indicate unavailable datum values for a tide station. Real-time water levels, tide predictions, and tidal current predictions are available on the Internet from http://tidesandcurrents.noaa.gov.

(Jan 2011)
Taking a Fix

A “fix” is a determination of a position at a particular time.

How do you take a fix?
Taking a Fix

A “fix” is a determination of a position at a particular time.

How do you take a fix?
Taking a Fix

- Determining distance at sea is difficult
- Determining angles is easier
Taking a Fix

Using compass bearings to take a fix:
• Find two or three good targets to take bearings on:
 • Beacons and objects on land are better than buoys
 • Targets that are separated by large angles are better
 • Close targets are better than distant targets
Taking a Fix

Using compass bearings to take a fix:
- Locate the targets on your chart.
Taking a Fix
Taking a Fix
Taking a Fix
Taking a Fix

Beacons and objects on land are better than buoys

- Buoys are not in an exact position
- Buoys can be off-station
Taking a Fix

Closer targets are better than farther targets

- Error in position will be proportional to angle measurement error times the distance to the target.
Taking a Fix

Closer targets are better than farther targets

- Error in position will be proportional to angle measurement error times the distance to the target.

At a distance of 2nm, 3° error ≈ 600ft.
Taking a Fix

Closer targets are better than farther targets

- Error in position will be proportional to angle measurement error times the distance to the target.

At a distance of 2nm, 3° error ≈ 600ft.

At a distance of $1/2$ nm, 3° error ≈ 150ft.
Taking a Fix

Lines of Position should be at wide angles to each other

- LOP's at smaller angles cause greater error
- Optimal angle for two LOP's is 90°
- Optimal angles for three LOP's is 120°
Taking a Fix

Lines of Position should be at wide angles to each other

- LOP's at smaller angles cause greater error
- Optimal angle for two LOP's is 90°
- Optimal angles for three LOP's is 120°
Taking a Fix

Lines of Position should be at wide angles to each other

- LOP's at smaller angles cause greater error
- Optimal angle for two LOP's is 90°
- Optimal angles for three LOP's is 120°
Taking a Fix

Using a Range as a Line of Position
Taking a Fix

Using a Range as a Line of Position
Taking a Fix

Using a Range as a Line of Position
Taking a Fix

Using a Range as a Line of Position
Dead Reckoning

Estimating your position based on:

- Previously known position
- Known course and speed

To do this you need:

- Way to determine course (ship's compass)
- Way to measure speed (knotmeter)
- Way to measure time
- Chart
- Dividers, Ruler, Protractor or Parallels
- Pencil & Eraser
Dead Reckoning

Definitions

- **Heading**: direction the boat is pointing
- **Course**: intended direction for the boat to travel
- **Track**: actual direction the boat is traveling and/or the path the boat has taken (sometimes called Course Made Good (CMG))
- **Bearing**: direction to another object
- **Relative Bearing**: direction to another object relative to the heading of the boat
Dead Reckoning

Heading vs. Track (Leeway)
Dead Reckoning

• Start with a fix (a position and a time)
• Steer to a course.
• Maintain constant speed.
• After a period of time, calculate distance traveled and mark it on the chart as a Dead Reckoning position (DR). Be sure to label the time.
Dead Reckoning
Dead Reckoning
Dead Reckoning
Dead Reckoning

- Mark DR positions at regular intervals or any time there is a change in course or speed.
- If you are able to take a fix, do so and start the dead reckoning all over again.
Dead Reckoning
Dead Reckoning
Navigation Rules

The Navigation Rules are the national and international laws that govern seagoing vessels on the high seas and all navigable connected waterways.

The Navigation Rules that are applicable to U.S. waters are divided into two sections:

- International Rules
- Inland Rules
Navigation Rules

International Rules

- Based on the 1972 International Treaty for the Prevention of Collisions at Sea
- Known as the 72 COLREGS

Inland Rules

- Almost identical to the International Rules
- A few minor differences

Demarcation lines exist between areas subject to Inland vs. International rules.
Navigation Rules

COLREGS demarcation lines are marked on charts
Navigation Rules

Rule 2 – Responsibility

“Due regard shall be had to all dangers of navigation and collision and to any special circumstances, … which may make a departure from these Rules necessary to avoid immediate danger.”

You are responsible for operating your vessel safely and breaking a rule is ok if necessary to avoid a collision.
Navigation Rules

Rule 3 – Definitions

- Power Driven Vessel
- Sailing Vessel
- Vessel Engaged in Fishing
- Vessel Not Under Command
- Vessel Restricted in Its Ability to Maneuver
- Underway
- Give-Way Vessel
- Stand-On Vessel
- Restricted Visibility
- et al.
Navigation Rules

Rule 5 – Lookout

You are required to have an proper lookout at all times. If you have a collision, your lookout was not adequate.

Rule 6 – Safe Speed

You are required to proceed at safe speed at all times. You must be going slow enough to prevent collisions regardless of the conditions and circumstances.
Navigation Rules

Rule 7 – Risk of Collision

“Every vessel shall use all available means ... to determine if risk of collision exists. If there is any doubt such risk shall be deemed to exist.”

Also if you have a working radar system, you are required to use it.
Navigation Rules

Rule 8 – Action to Avoid Collision

“Any action taken to avoid collision shall, if the circumstances of the case admit, be positive, made in ample time and with due regard to the observance of good seamanship.”

“Any alteration of course and/or speed to avoid collision shall, if the circumstances of the case admit, be large enough to be readily apparent to another vessel....”

Take action early. Make it count. Make it obvious.
Navigation Rules

Rule 9 – Narrow Channels

- Stay to the right if possible.
- Do not impede larger vessels that must stay in the channel.
- Fishing vessels cannot impede traffic in the channel.
- Avoid anchoring in the channel.

Rule 10 – Traffic Separation Schemes

- For use of large commercial ships
- Smaller boats should avoid the lanes.
- If necessary, cross lanes at right angles.
- Ships using the lanes have right of way over small boats and sailboats.
Navigation Rules

Rule 12 – Sailing Vessels

- Boats on port tack stay clear of boats on starboard tack.
- If on the same tack, windward boats stay clear of leeward boats.

Rule 13 – Overtaking

- Overtaking boats keep clear of the vessel being overtaken.
- A vessel is overtaking if it is approaching at an angle of more than 22° aft of abeam of the other vessel.
- Overtaking vessel must keep clear until “she is finally past and clear”.
Navigation Rules

Rule 14 – Head-On Situation
• Both boats turn to starboard and pass port-to-port.

Rule 15 – Crossing Situation
• Boat on the left gives way to the boat on the right.

Rule 16 – Action by Give-Way Vessel
• Take action early and stay well clear.

Rule 17 – Action by Stand-On Vessel
• Must maintain course and speed.
• Unless it looks like the other boat isn't going to turn.
Navigation Rules

Rule 18 – Responsibilities between Vessels

- The pecking order for stand-on vessels is:
 - Vessels not under command (all other vessels give way)
 - Vessels “restricted in their ability to maneuver”
 - Vessels engaged in fishing
 - Sailing vessels
 - Power driven vessels
 - Seaplanes (gives way to all other vessels)
Navigation Rules

Rule 19 – Conduct of Vessels in Restricted Visibility

- Proceed at safe speed.
- Be on the lookout.
- Use due regard to the prevailing circumstances when complying with all other rules.
- Be prepared to slow down or stop if another vessel is ahead.
Navigation Rules

Rule 20 – Lights and Shapes - Application

- Rules 21-31 describe lights and shapes.
- Lights must be used at night (sunset to sunrise).
- Shapes must be used during the day.
Navigation Rules

Rule 21 – Lights and Shapes - Definitions

- Masthead light – white facing forward 225° arc
- Sidelights – red and green, each 112.5° arc
- Sternlight – white, 135° arc
- Towing light – yellow stern light, 135° arc
- All-round light – 360°
- Flashing light – 120 flashes per minute or more
- Special flashing light – forward facing yellow light, flashing 50-70 flashes per minute, over an arc of 180-225°
Navigation Rules

Rule 22 – Visibility of Lights
- The visibility of the various lights (in miles) are specified
- Larger vessels are required to have brighter lights

Rule 23 – Power Driven Vessels Underway
- Masthead light
- A second masthead light for vessels longer than 50m
- Sidelights
- Sternlight
- If less than 12m, can just use and all-round white light and sidelights.
- If less than 7m, can just use an all-round white light.
Navigation Rules

Vessel longer than 50m: two masthead lights, sidelights and a sternlight
Navigation Rules

Vessel shorter than 50m: one masthead light, sidelights and a sternlight
Navigation Rules

Vessel shorter than 12m: all-around white light and sidelights
Navigation Rules

Vessel shorter than 7m: all-around white light
Navigation Rules

Rule 24 – Towing and Pushing

• Towing astern:
 • Two masthead lights in a vertical line (3 if over 200m)
 • Sidelights
 • Sternlight
 • Yellow towing light vertically above the sternlight

• Towing aside or pushing, same as above, except:
 • Inland: no sternlight, but two yellow towing lights
 • International: no yellow towing lights
Navigation Rules

Rule 24 – Towing and Pushing

- Vessel being towed from ahead:
 - No masthead light
 - Sidelights
 - Sternlight

- Vessel being pushed or towed along side:
 - No masthead light
 - Sidelights
 - Sternlight
 - Special flashing yellow light at bow (Inland rules only)
Navigation Rules

Towing Astern

International

Inland

Pushing or Towing Alongside
Navigation Rules

Pushing

International

Inland

Towing Alongside
Navigation Rules

Rule 25 – Sailing Vessels Underway

- Sailboats must have:
 - Sidelights
 - Sternlight
- The above can be replaced by a tri-color light at the top of the mast.
- Optionally, two all-round lights, red over green, can be at the top of the mast (but cannot be used with tri-color).

- Vessels under oars may have sidelights and sternlight
- Sailboats under 7m or vessels under oars can just use a flashlight.
Navigation Rules
Navigation Rules

Rule 26 – Fishing Vessels

Vessels engaged in trawling (underway and not underway)

Vessels engaged in fishing other than trawling (underway and not underway)
Navigation Rules

Rule 27 – Vessels Not Under Command or Restricted in Ability to Maneuver

Vessels not under command (underway and not underway)

Vessels restricted in their ability to maneuver (underway and not underway)
Navigation Rules

Rule 27 – (continued)

- Vessels engaged in diving operations
Navigation Rules

Rule 30 – Vessels at Anchor or Aground

Vessels at anchor
(<50m and >50m)

Vessels aground
(<50m and >50m)
Navigation Rules

Rule 32 – Sound & Light Signals - Definitions

- Whistle
- Short blast – 1 second
- Prolonged blast – 4 to 6 seconds

Rule 33 – Equipment for Sound Signals

- Vessel longer than 100m: whistle, bell and gong
- 12m to 100m: whistle and bell
- Shorter than 12m: some means of making an efficient sound signal
Navigation Rules

Rule 34 – Maneuvering and Warning Signals

- Inland: Head-on or crossing vessels
 - One short blast: I intend to leave you to my port side.
 - Two short blasts: I intend to leave you to my starboard side.
 - If in agreement, the other vessel will echo back the whistle blasts. If not, they will sound five or more rapid whistle blasts.

- International:
 - One short blast: I am altering my course to starboard
 - Two short blasts: I am altering my course to port
Navigation Rules

Rule 34 – Maneuvering and Warning Signals

- Inland: Overtaking:
 - Same as meeting or crossing.
- International: In a narrow channel:
 - Two long, one short blast: I intend to overtake you on your starboard side.
 - Two long, two short blasts: I intend to overtake you on your port side.
 - If in agreement, the other vessel answers back: one long, one short, one long, one short.
Navigation Rules

Rule 34 – Maneuvering and Warning Signals

- Three short blasts means I am backing up.
- At any time, if there is disagreement, confusion or danger, sound the danger signal: 5 or more rapid blasts.
- When approaching a bend in a channel or an area of obscured visibility, one prolonged blast.
- Inland only: when a power vessel is leaving a dock, one prolonged blast
- Inland only: one or two short blasts can be substituted by calling on the radio.
Navigation Rules

Rule 35 – Sound Signals in Restricted Visibility

- Power vessel making way: one prolonged blast every 2 minutes
- Power vessel underway but not making way: two prolonged blasts every 2 minutes
- Vessel not under command, restricted in ability to maneuver, engaged in towing, engaged in fishing while at anchor, or a sailboat: one prolonged and two short blasts every two minutes.
- Vessel at anchor: ring bell rapidly for 5 seconds every minute.
Navigation Rules

Rule 37 – Distress Signals

- RED STAR SHELLS
- FOG HORN CONTINUOUS SOUNDING
- FLAMES ON A VESSEL
- GUN FIRED AT INTERVALS OF 1 MIN.
- ORANGE BACKGROUND BLACK BALL AND SQUARE
- SOS
- "MAYDAY" BY RADIO
- PARACHUTE RED FLARE
Rule 37 – Distress Signals

- DYE MARKER (ANY COLOR)
- CODE FLAGS NOVEMBER CHARLIE
- SQUARE FLAG AND BALL
- WAVE ARMS
- RADIO-TELEGRAPH ALARM
- RADIO-TELEPHONE ALARM
- POSITION INDICATING RADIO BEACON
- SMOKE
Satellite Navigation
Satellite Navigation

Global Positioning System (GPS)

- Built by the U.S. Government and maintained by the U.S. Department of Defense.
- Originally conceived as a military system; now considered a “dual-use” system (military and civilian).
- First satellite launched in 1978.
- Ten more satellites launched by 1985.
- First consumer hand-held receivers sold in 1989.
- Declared to be fully operational in April 1995.
- “Selective Availability” disabled in May 2000.
Satellite Navigation

Global Positioning System (GPS)

- System of 24+ satellites.
- Satellites transmit precise time and position data.
- Receivers on Earth need data from four satellites.
- Receivers triangulate their positions.
- Accurate to ±10m.
- Works anywhere on Earth in any weather.
Satellite Navigation

Global Positioning System (GPS)

- Satellites transmit very accurate time and position data.
- Radio signals travel at the speed of light: 299,792,458 m/s.
- If you know how long it takes the signal to reach you, you know exactly how far away the satellite is.
- If you know how far away three satellites are, you can determine your 2D position on the earth.
- If you know how far away four satellites are, you can determine your 3D position on the earth.
Satellite Navigation

One sphere of position.

Two spheres of position create a circle of position.

Three spheres of position reduce to two points.
Satellite Navigation

Sources of GPS Position Error

- Signal arrival time measurement: $\pm 10 \text{ nS} \rightarrow \pm 3\text{m}$
- Atmospheric effects: $\pm 5\text{m}$
- Ephemeris errors (satellite position): $\pm 2.5\text{m}$
- Satellite clock errors: $\pm 2\text{m}$

Accuracy is better than 10m 95% of the time.
Satellite Navigation

GPS Accuracy Enhancement

- Differential GPS (DGPS)
 - Uses reference stations on land with known positions.
 - Reference station determines difference between its true position and the calculated GPS position.
 - The error information is transmitted to GPS receivers which combine it with their own GPS data to provide a more precise location.
 - Accuracy can be 1-5m.
 - The accuracy decreases with distance from the reference station. Range is about 200 km.
Satellite Navigation

GPS Accuracy Enhancement

- Differential GPS (DGPS)
 - The U.S. operates about 80 reference stations:
 - US Coast Guard (Maritime)
 - US Army Corp Engineers (Rivers)
 - NDGPS (Inland)

- Canadian DGPS
- European DGPS Network
- 47 countries around the world operate DGPS systems
Satellite Navigation

Nationwide DGPS Coverage

Legend
- DGPS Sites
- Single Coverage
- Multiple Coverage
Satellite Navigation

GPS Accuracy Enhancement

- Differential GPS (DGPS)
 - Transmits at 283-325 kHz
 - Requires a separate receiver and antenna from GPS
 - Some products have DGPS integrated into their GPS receivers.
Satellite Navigation

GPS Accuracy Enhancement

- Wide Area Augmentation System (WAAS)
 - Similar to DGPS.
 - Developed by the FAA for aircraft.
 - Uses a network of ground-based reference stations.
 - The correction data is then sent to geostationary satellites.
 - The satellites transmit the error corrections on the same frequency as GPS.
- Typical accuracy is 2-3m.
Satellite Navigation
Satellite Navigation

Satellite Based Augmentation Systems (SBAS)
Satellite Navigation

Other Global Navigation Satellite Systems

- GLONASS – Soviet/Russian System (since 1995)
- Galileo – European (2017-2020)
- BeiDou – Chinese System (2012-2020)
- IRNSS – Indian System (2016)
Satellite Navigation

GPS Chartplotters

- Portable vs. fixed
- Internal vs. external antenna.
- Different chart options.
- Navigation features (i.e. VMG?)
Satellite Navigation

GPS Chartplotters

- Interface with other devices
 - Depth sounder
 - Wind instruments
 - Electronic compass
 - VHF radio (DSC)
 - AIS
- NMEA-0183 vs. NMEA-2000
Satellite Navigation

GPS Chartplotters

Grays Rk

Chappel Ledge
AIS

Automatic Identification System

- Tracking system for ships.
- Transmitters required on large commercial vessels.
- Digital data transmitted on VHF radio frequencies.
- Includes data about the vessel:
 - Name of vessel
 - Length and width
 - Latitude and longitude
 - Heading
 - Speed
 - Destination
 - Type of vessel
 - et al.
AIS

Automatic Identification System

- Transceivers receive data from other ships.
- They re-broadcast that data along with their own.
- Transceivers are also being placed on aids to navigation.
- Range is limited by VHF frequencies: 10-20 nm.

- AIS units can have integrated displays, or can connect to a chartplotter.
- Chartplotters may have software to predict collisions with nearby ships.
Online Resources

http://navcen.uscg.gov/
http://tidesandcurrents.noaa.gov/
http://mailman.mit.edu/mailman/bluewater

Further Reading

Chapman Piloting and Seamanship
By Jonathan Eaton

Annapolis Book of Seamanship
By John Rousmaniere

Piloting and Dead Reckoning
By Capt. H.H. Shufeldt and G.D. Dunlap